OpGen > Company

Company

OpGen’s Whole Genome Mapping technology, formerly “Optical” Mapping technology, provides innovative tools for genomic sequence assembly and finishing, microbial strain comparison and species characterization.  Our mission is to positively influence individual healthcare outcomes, advance scientific research, and enhance public health by delivering precise, actionable information and results to customers in the life science and healthcare communities. Our customers are focused on DNA sequencing, epidemiology, outbreak identification, microbial forensics, biodefense and pharmaceutical discovery.

Company Overview

Company headquartersOpGen Incorporated is a privately held, whole-genome analysis company headquartered in Gaithersburg, Maryland.  The company was founded in January 2002 by the Wisconsin Alumni Research Foundation (WARF), with the objectives of developing and commercializing products and services based on proprietary Whole Genome Mapping technologies for high-precision microbial analysis markets.

The Argus® Whole Genome Mapping System was launched in 2010 and is in use today for the automated assembly and analysis of genomes at the world’s most prestigious sequencing centers.

The company’s corporate offices and commercial MapIt® laboratory are located in Gaithersburg, Maryland.

Our Journey Forward

OpGen’s powerful technology dramatically improves the quality of data and time-to-results by providing sequence information from single molecules of DNA many times faster and less expensively than previously possible.  Applications for assembling large genomes such as those of humans, plants and animals were introduced in the second half of 2011. Improved DNA sequencing bioinformatics workflows and databases are also under development.  We expect these products to enable the creation of a high-value DNA sequence analysis diagnostics business.

“Physical map and genetic map still should be emphasized as an important parts of a reference genome. Recent progress in technologies, such as the whole genome mapping high-throughput platform offered by OpGen, now provide the tools for efficient physical map construction. This independent technology provides not only the validation of the genome sequencing, but also provides the large-scale chromosome structure information that cannot be detected by sequencing. We applied this technology as an assistant tool of the NGS to assemble bacterial, plant and large mammalian genome with reliable accuracy and generate the sub-chromosome graded assembly. The experience in these genome assembly projects shows that the physical map should be the standard for any reference genome to be assembled in further.”

Xun Xu, Ph.D.

Deputy Director at BGI
 

This independent technology provides not only the validation of the genome sequencing, but also provides the large-scale chromosome structure information that cannot be detected by sequencing.

Xun Xu, Ph.D.
Deputy Director at BGI

“Our research focuses on a wide variety of projects from viruses and microbes to crop plants and mammals. Many of our projects are de novo assembly projects, where, without a closely related genome sequence, it can be difficult to critically assess the results. We often combine different sequencing technologies, and we are finding that regardless of the sequencing platform, error correction, or assembler used, OpGen’s Whole Genome Mapping identifies misassemblies and provides the highest quality de novo assembly for further research.”

Matthew Clark, Ph.D.

Team Leader, Sequencing Technology Development

The Genome Analysis Centre (TGAC), Norwich, UK

OpGen’s Whole Genome Mapping identifies misassemblies and provides the highest quality de novo assembly for further research.

Matthew Clark, Ph.D.
Team Leader, Sequencing Technology Development

“We adopted OpGen’s Argus System as the most advanced way of adding Whole Genome Mapping to improve whole genome sequences. We combined Whole Genome Maps with sequence assemblies to correct errors and misassemblies in bacterial genome sequences as part of our program in the Human Microbiome Project. We are now moving the technology into larger genome projects.”


George Weinstock, Ph.D.

Associate Director
 The Genome Institute at Washington University

We combined Whole Genome Maps with sequence assemblies to correct errors and misassemblies in bacterial genome sequences. This is part of our program from the Human Microbiome Project.

George Weinstock Ph.D.

Associate Director

The Genome Institute at Washington University

“Certain things you just have a tough time answering with de novo sequencing. And assembly doesn’t always work out as sweetly as you would like. So definitely for any whole genome de novo project that people are insistent on closing we would do a Whole Genome Map optically as well as de novo assembly. And the amount of money you would save is in the thousands of dollars in finishing.”

Stefan Green

Director of DNA Services

University of Illinois Chicago Research Resources Center (UIC RRC)

Definitely for any whole genome de novo project that people are insistent on closing we would do a Whole Genome Map.

Stefan Green
Director of DNA Services

“Physical map and genetic map still should be emphasized as an important parts of a reference genome. Recent progress in technologies, such as the whole genome mapping high-throughput platform offered by OpGen, now provide the tools for efficient physical map construction. This independent technology provides not only the validation of the genome sequencing, but also provides the large-scale chromosome structure information that cannot be detected by sequencing. We applied this technology as an assistant tool of the NGS to assemble bacterial, plant and large mammalian genome with reliable accuracy and generate the sub-chromosome graded assembly. The experience in these genome assembly projects shows that the physical map should be the standard for any reference genome to be assembled in further.”

Xun Xu, Ph.D.

Deputy Director at BGI
 

This independent technology provides not only the validation of the genome sequencing, but also provides the large-scale chromosome structure information that cannot be detected by sequencing.

Xun Xu, Ph.D.
Deputy Director at BGI

“Our research focuses on a wide variety of projects from viruses and microbes to crop plants and mammals. Many of our projects are de novo assembly projects, where, without a closely related genome sequence, it can be difficult to critically assess the results. We often combine different sequencing technologies, and we are finding that regardless of the sequencing platform, error correction, or assembler used, OpGen’s Whole Genome Mapping identifies misassemblies and provides the highest quality de novo assembly for further research.”

Matthew Clark, Ph.D.

Team Leader, Sequencing Technology Development

The Genome Analysis Centre (TGAC), Norwich, UK

OpGen’s Whole Genome Mapping identifies misassemblies and provides the highest quality de novo assembly for further research.

Matthew Clark, Ph.D.
Team Leader, Sequencing Technology Development

“We adopted OpGen’s Argus System as the most advanced way of adding Whole Genome Mapping to improve whole genome sequences. We combined Whole Genome Maps with sequence assemblies to correct errors and misassemblies in bacterial genome sequences as part of our program in the Human Microbiome Project. We are now moving the technology into larger genome projects.”


George Weinstock, Ph.D.

Associate Director
 The Genome Institute at Washington University

We combined Whole Genome Maps with sequence assemblies to correct errors and misassemblies in bacterial genome sequences. This is part of our program from the Human Microbiome Project.

George Weinstock Ph.D.

Associate Director

The Genome Institute at Washington University

“Certain things you just have a tough time answering with de novo sequencing. And assembly doesn’t always work out as sweetly as you would like. So definitely for any whole genome de novo project that people are insistent on closing we would do a Whole Genome Map optically as well as de novo assembly. And the amount of money you would save is in the thousands of dollars in finishing.”

Stefan Green

Director of DNA Services

University of Illinois Chicago Research Resources Center (UIC RRC)

Definitely for any whole genome de novo project that people are insistent on closing we would do a Whole Genome Map.

Stefan Green
Director of DNA Services

CLOSE